複素数平面の虚軸の書き方
-
戸籍謄本・住民票の写し等職務上請求書の書き方
1.戸籍等の個人情報の取扱について 2.職務上請求書とは? 3.特殊な職種(行政書士)の業務 4.行政書士の職務上請求書の必要性 ...
-
お布施の金額の書き方
お布施というのは、仏教の慣習の一つであり、供養していただいている感謝の気持ちをあらわしたり、本尊へお供えするという考え方のもと、お寺への援助として渡すお金のことをいいます。...
-
書類の送付の封筒の書き方
普段、私達の生活の中ではたくさんの郵便物が飛び交っています。最近ではパソコンや携帯電話が普及してきたので、手紙の代わりにメールを使用する機会も増えてきましたが、やはり郵便物...
-
質問状の書き方
質問状は仕事でもプライベートでも簡単に利用することが出来、テンプレートに沿った書き方をするだけで初心者でも楽に記入することができます。また、相手にも失礼がないですし、わかり...
-
文章で主張を明確に提示する方法とは何か
1.自分が何を感じているのか 2.しかし、文章には言葉とは異なるメリットも存在します。 3.どんなによい主張であっても 情報...
-
統一感のある文章の書き方
文章を書いている途中、いつの間にかタイトルとは違う内容のことを書いていることはありませんか? また、書きたいことがたくさんあり、思いつくままに書いて、結果読み手に「結局何が言いたい...
-
清算結了の決算報告書の書き方
決算報告書とはその名の通り決算の内容をまとめた書類ですが、清算が結了した時には決算報告書と呼ばれる書類を2種類つくらなければなりません。1つは、税務署に税務申告を行う際に提...
-
車検代を払ってもらえない場合の督促状の書き方
車検を受け付けている業者と言えば、車を購入したディーラーだけでなく修理工場やガソリンスタンド、車検専門店、民間車検場等が挙げられます。車検を受ける時はあらかじめ費用を見積も...
-
労基署の届出第20号の書き方
労働基準監督署(労基署)に対して提出する届出書類のうち、様式第20号と呼ばれる書類は正式には「建設物・機械等設置・移転・変更届」と呼ばれています。 ...
-
病気療養による退職届の書き方
仕事をしていると、どうしても体調を崩してしまい、無理をすることもできないので退職することになってしまった、ということもあります。そのようなときには、きちんと病気のことや退職...
主に大学の理工系の学生が習うであろう複素関数論の中に複素数平面というものが存在します。複素関数論は複素数というものを用いた数学です。複素数とは虚数というものを用います。
複素数平面とはなんでしょうか
主に大学の理工系の学生が習うであろう複素関数論の中に複素数平面というものが存在します。複素関数論は複素数というものを用いた数学です。複素数とは虚数というものを用います。虚数は一般的にi(電気系だとjと書くこともあります)と表し、二乗すると-1になる仮想の数です。
自然界に存在する数である実数は、二乗すると必ず正になるのですが、それだと解けない方程式が存在することから考案された数です。複素数とは、虚数と実数と組み合わせて表現される数で、ある複素数zは任意の実数a,bを用いてz=a+biと表現されます。そして、この複素数をベクトルとみなして、座標平面上に点をプロットしたものが複素数平面と呼ばれます。
複素数平面は実軸と虚軸で構成されます。一般に実軸が水平に描かれ、虚軸はそれに垂直に引かれます。実軸と虚軸が交わった点を原点と呼び、0+0iの点(0,0)を表します。この複素関数を用いることで、座標の回転などを表すことができるので、特に電気系の学生にとって重要になる学問です。
複素数は、z=a+biと定義する代わりに、大きさrと位相θの2つのパラメータを用いて表現することもでき、これは電気工学における交流信号の振幅と位相をオイラーの公式などを用いて表現・計算するのに非常に便利なので、よく用いられます。交流信号を複素数で表現するやり方はフェーザ表示と呼ばれています。今回は、このような複素数を座標平面にプロットした複素数平面について、虚軸をどう書くかということを中心に、複素数平面の理解を深めていきたいと思います。
二次関数のx軸、y軸の書き方
複素数平面と聞くと、なんか難しそうと思う人は大勢いると思います。最近では新課程カリキュラムで高校生の理系科目に複素数平面が追加されたこともあり、ますます複素数平面の重要性が高まっています。しかし、複素数平面は本質的には座標平面とあまり変わらないので、そう恐れることもありません。
複素数平面を考える前に、まずは簡単な実数関数(二次関数など)の座標を考えてみたいと思います。高校などで習う一変数実数関数は一般的に、実数変数をxとしてf(x)と表現されます。これは高校などでも習うので知っている人も多いのではないかと思います。ここで、fは関数を表します。
語源はfunctionのfから来ています。f(x)の値をyとおいて、y=f(x)の形で表すことも多いと思います。ここでは簡単のためにf(x)を一次関数として考えます。f(x)が一次関数であるとすると、傾きをa、y切片(y軸と交わる点)をbとして、一般にy=f(x)=ax+bと表現されます。この関数はx-y座標に表現することができます。
x-y座標の書き方は次のようになります。まず、x軸を水平に描き、y軸をx軸に垂直に描きます。そして、x軸とy軸が交わった点を原点として、y=x=0の点とします。これでx-y座標が描けました。ここで座標の表し方に注意です。x=0、y=0の点を表す時は(0,0)と表現します。x=2、y=1の時は(2,1)ですね。x、yの順番に描くことがポイントです。
実数平面と複素平面の関係
では実数平面と複素数平面はどんな関係があるのでしょうか。さきほど、実数xとそれに対応する実数yの座標は(x,y)で表されることを示しました。では複素数の座標はどのように表現するのでしょうか。複素数は一般にz=x+iyと表現します。ここで、複素数の座標も同じように(x,y)と表します。なんか実数平面と似ています。
このことに着目して、複素数も実数と同じように平面に表せるようにしようと考えられて考案されたのが複素数平面です。ちなみに、複素数は大きさrと位相θでも表現されることを前に述べました。大きさrはxの二乗とyの二乗を足して、平方根をとったものです。また位相θは、ちょっと難しいですがθ=arctan(y/x)と表現されます。
位相っていうとちょっと難しいですが、ここでは簡単に角度と考えてもらっていいです。ここで、複素数はベクトルと見ることができます。実数平面では原点と座標を結んだ線分の長さを、その座標の原点からの距離といいます。複素数も同様に複素数平面で、原点から座標(x,y)に向かって矢印を引いて、その長さを複素数の大きさと呼びます。
そして、その矢印の実軸からの角度を位相θと呼びます。位相は一般的にラジアンで表示されます。そして、この矢印をベクトルとみなすことで、複素数を複素数平面上にベクトル表示できます。このように、難しそうな複素数平面も元をたどれば実数平面と似たところがたくさんあります。そもそも複素数は実数を拡張して作られたものなので当然です。
複素平面での虚軸の書き方
さて、複素数平面の虚軸とはなんでしょうか。これは意外と簡単で、実数平面と同じように考えることができます。まず、複素数zを実数x、yを用いてz=x+iyと表してy=0の時を考えます。この時、z=xとなって、これはxの値に関わらず常に実数になります。この時、zの座標は(x,0)となって、虚数部分は常に0です。
よって、この時のzの点を実軸と呼ばれる軸の上に置くことにします。次にx=0の時、z=iyとなって、これは実数yの値に関わらず常に虚数となります。この時、zの座標は(0,y)となって、実数部分は常に0です。よって、この時のzの点を虚軸と呼ばれる点に置くことにします。つまり、虚軸とは、実数部分が0の複素数(純虚数といいます)を置く場所と考えることができます。これらを用いて複素平面を表現できます。
まず、実軸を水平に引いて、それに垂直に虚軸を引けばいいのです。これで複素平面で虚軸を書くことができました。数学の課題などで、複素平面に虚軸を描けと言われたら、実軸に垂直な線分(つまり虚軸)をなぞればいいということになります。このように複素平面での虚軸の書き方はとっても簡単で基本の部分です。
しかし、基本を十分に理解することが、難しいことを理解しようとするときにとても重要なので、虚軸の書き方を理解すれば必ず複素数を理解するのに役立ちます。理解するのが難しい場合は、数学特有の用語(実数や虚数など)がすんなり理解できてない場合が多いので、もっと簡単なところから戻って考えてみてください。