カイ二乗検定結果の書き方
-
AO入試のエントリーシートの書き方
10年以上前に大学全入時代に突入し、大学や専門学校に進学したいと思ったら、高望みをしなければ希望通りの学校に進学することも夢ではない時代になっているのです。ですから、入試の...
-
原本証明の書き方
1.原本証明の概要 2.原本証明の必要な場面 3.原本証明の具体的な書き方 4.原本証明のアドバイスともう一つの方法 &nb...
-
入学の辞退届の書き方
入学の辞退届を書く場合、まず書く前の心構えが問われます。書く人のバックグランドに応じて書き上げることが大切になってくるからです。 1.入学辞...
-
寄付の依頼文の書き方
学校の運営というのは、もちろん国などからの補助金というものもあれば、他からのお金というものもあるわけですが、中でも必要不可欠なのは寄付金というものの存在です。 &nb...
-
リアルワールドのクラウドの文書作成方法
リアルワールドのクラウドという文書作成によって、ポイントが与えらえるサイトがあります。このサイトは、クライアントである企業を中心とした依頼者から来る依頼内容に基づいて、一定のルール...
-
欠席するときの手紙の書き方
小学生の子どもが学校を欠席するとき、保護者は学校に電話で連絡しなくても連絡帳に欠席の連絡を書いてお友達に届けてもらうことができます。 1.小...
-
手紙の書き方~女性~
手紙を書くときには、ビジネスのときに使用できるものとプライベートのときに使用したほうがいいものがあります。書き出しも季節ごとに違うものだということです。その時期にあった言葉...
-
書き方というものを再考する
今の時代は、文字を書くという事が、だいぶされなくなってきています。と言いますのも、今はパソコンをはじめとしたキーボードで文字入力をする事が、主流になってきているからです。 &...
-
推薦書用封筒の書き方
1.推薦状/推薦書とは 2.失礼のない宛名の書き方 3.推薦状を依頼する前に 推薦状/推薦書とは ...
-
家系図の書き方
1.家系図の書き方の基本 2.縦系図と横系図 3.パソコンでの制作や、業者依頼 家系図の書き方の基本 ...
カイ二乗検定という言葉に初めて触れる機会があるとすれば、大学などで行う統計学の授業である場合が多いでしょう。このカイ二乗検定という統計手法は観測されたデータの分布が理論値の分布とほぼ同じであるかどうかを判断するために行われるものという説明が行われます。
カイ二乗検定とは何か
カイ二乗検定という言葉に初めて触れる機会があるとすれば、大学などで行う統計学の授業である場合が多いでしょう。このカイ二乗検定という統計手法は観測されたデータの分布が理論値の分布とほぼ同じであるかどうかを判断するために行われるものという説明が行われます。
この様な仕組みを頭だけで理解することは難しく、実際に使いこなすには実例を伴って活用するのが一番であると言えるでしょう。一般的には医学や心理学などで誤差範囲の差であるのか、それとも本当に差があるかどうかの判断を行う最も基本的な手法として活用されています。
現代の様にパソコンなどが一般的ではなかった時代から存在している統計手法であり、その理論の理解のためには手計算で学ぶ必要があるものでしたが、最近のパソコンでは簡単に計算を行うことが出来るようになっています。より具体的にはサイコロを振って出る目の数のばらつきの説明などに用いられるでしょう。例えば歳頃には6つの面があり、全ての面は等しいので理論値としては60回振ったら全ての面が10回ずつ出ることになります。
しかし実際にサイコロを振ったら多少のばらつきが出るのは当たり前のことであると理解できるでしょう。そのバラツキが誤差の範囲か、それとも誤差以上の何かがあるのかを弁別するのがカイ二乗検定の目的なのです。例えばサイコロの形が歪んでいる場合などを想定し、出る目に偏りが生じる可能性があるのかないのかを判定するうえでも役立つ手法になっていると言えるでしょう。
どのように差があると判定するのか
カイ二乗検定では一般的に5%を基準として判定する仕組みを採用しています。検定を行う上で前提となる条件としては理論値と実測値には差がないという前提を仮定し、その上で検定を行って差がないという可能性がどの程度あるかを測定するのです。その上で出てきた数値が5%以下、
つまり差がないという可能性が5%以下である場合に差があるという判断をするというのが統計手法です。高校までに行ってきた数学に比べると何ともはっきりしないあいまいな基準であると感じるのが自然ですが、統計学の世界においてはこの5%というのが一つの区切りとなって有意な差があるという判断をすることになります。
前提条件である理論値と実測値に差がないという仮説のことを帰無仮説といいます。これは差がないということを意味する仮説であることから付いた名前であり、この様な仮説が正しい可能性が5%以下であることによって差があるという推定が成り立つというのがカイ二乗検定の仕組みです。なお、1%以下の水準になる場合にはより強く差があるということが出来ます。
医学において薬の効果があると認められる場合などにはこの様な基準が採用されます。個人差があるものですので必ずしも効果がある人ばかりではありません。ある薬を使ったグループと使わなかったグループの差を検定し、差がないという仮定の下で統計した結果、差がない可能性が5%以下であった場合には何らかの作用がその薬にはあるという判断をすることが出来るのです。
カイ二乗検定の結果の書き方
医学論文や心理学論文を見ると差があるということの証明、または効果があることの証明にカイ二乗検定の様な統計手法が良く使われます。実際にはカイ二乗検定が役立つのはかなりシンプルなケースに限られますが、統計学の初歩として理解しておく必要があるものの一つであると言えるでしょう。
このような統計手法の結果は前述したとおり5%以下の水準で差がないという仮説が棄却出来るかどうかを明示する必要があります。その様な場合に論文中では一般に「5%水準で有意な差がある」又は「帰無仮説が棄却される」という記述の仕方をします。これはすなわち差がないという可能性は5%以下ですよということを意味する文章になるのです。
さらに強い表現としては「1%以上の高い水準で有意な差がある」または「帰無仮説が棄却される」という表記も行います。これは差がない可能性が1%以下ですよということを示すものであり、実質的に差があるということを書き表す統計手法の書き方です。稀に「10%以下の水準で有意傾向がある」ということを示す場合もありますが、
これは非常に説得力が弱い表現であるため、一般的に差があることを納得させる材料としては使用されないものであると言えるでしょう。カイ二乗検定でも文章としてはこの様な表記を使用するものであり、読み手に対してどの程度の差があるものであるのかを明確に伝える役目を果たしてくれるものであると言えるでしょう。医学や心理学ではこの様な手法を用いて効果を証明します。
カイ二乗検定の表の表記について
カイ二乗検定の結果を日本語の文章で表記する場合には上記の様な表現をしますが、表現の仕方としては他にも「p<0.5」といった表現がなされることもあります。これは5%水準での有意な差を示す表記であり、学術論文では多用されます。あまり丁寧な書き方ではありませんのであまり望ましいものではありませんが、理解しておく必要があるでしょう。 カイ二乗検定の場合には正式にはP値と呼ばれる確率の他にも自由度と検定統計量(カイ自乗値)を併記するのが正しい表記ですので、統計の専門家を相手にする場合にはここまで計算結果を載せるべきでしょう。このデータを除外してしまうと判断してもらえないケースがあります。 また、有意な差があるというデータに対して小さな星マークであるアスタリスク「*」を付ける習慣があります。このマークを一個、あるいは二個付けることで有意な差があるデータを指定するという手法もありますが、あまり丁寧な表現ではありませんので注意しましょう。 カイ二乗検定は統計学の中では非常に基礎的な検定であり非常にシンプルな仕組みです。これ以上に複雑な計算も存在しており、分散分析や共分散構造分析など様々な統計手法を駆使して様々な証明が試みられています。 しかしいずれの統計手法においても5%水準、あるいは1%水準と呼ばれる統計学の基本的な水準が活用されていますのでカイ二乗検定の仕組みと同じものが根底を流れています。そのため基礎的な要素であるカイ二乗検定をしっかり理解することは統計学で重要なことなのです。